HjemGrupperSnakMereZeitgeist
Søg På Websted
På dette site bruger vi cookies til at levere vores ydelser, forbedre performance, til analyseformål, og (hvis brugeren ikke er logget ind) til reklamer. Ved at bruge LibraryThing anerkender du at have læst og forstået vores vilkår og betingelser inklusive vores politik for håndtering af brugeroplysninger. Din brug af dette site og dets ydelser er underlagt disse vilkår og betingelser.
Hide this

Resultater fra Google Bøger

Klik på en miniature for at gå til Google Books

Data Analysis: A Bayesian Tutorial af…
Indlæser...

Data Analysis: A Bayesian Tutorial (udgave 2006)

af Devinderjit Sivia (Forfatter)

MedlemmerAnmeldelserPopularitetGennemsnitlig vurderingOmtaler
1032205,649 (4.05)1
Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis. This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design. The Second Edition of this successful tutorial book contains a new chapter on extensions to the ubiquitous least-squares procedure, allowing for the straightforward handling of outliers and unknown correlated noise, and a cutting-edge contribution from John Skilling on a novel numerical technique for Bayesian computation called 'nested sampling'.… (mere)
Medlem:caobooks
Titel:Data Analysis: A Bayesian Tutorial
Forfattere:Devinderjit Sivia (Forfatter)
Info:Oxford University Press (2006), Edition: 2, 246 pages
Samlinger:Dit bibliotek
Vurdering:
Nøgleord:Pikridas

Detaljer om værket

Data Analysis: A Bayesian Tutorial af Devinderjit Sivia

Ingen
Indlæser...

Bliv medlem af LibraryThing for at finde ud af, om du vil kunne lide denne bog.

Der er ingen diskussionstråde på Snak om denne bog.

» See also 1 mention

Viser 2 af 2
An excellent introduction (and much more) to Bayes and Inference. Very well written and ties together several bits of statistics quite nicely eg relationships between binomial, Poisson, Gaussian distributions, student-t, chi-squared distributions; why the estimate for standard deviation divides by (N-1) instead of N, and so on. It does get pretty technical so would hold the interest of a practitioner of statistics, I think. ( )
  jvgravy | Jan 9, 2015 |
This book not only is a good book to learn Bayesian statistics from, but it's also a great reference for the subject as well. Taking a very hands-on approach, the concepts and philosophy of Bayesian statistical analysis are clearly presented through lucid explanations and an abundance of well-chosen examples. In the second edition, there is also a significant portion of the book dedicated to algorithmic implementation of Bayesian inference schemes; and this material is accompanied by C source code snippets to really solidify the ideas behind the algorithms. My one issue with this book is that I wish more pages had been dedicated to discussing MCMC (Markov Chain Monte-Carlo) algorithms for sampling posterior distributions. Indeed, adaptive MCMC algorithms represent the majority of sampling algorithms implemented when it comes to sampling analytically unknown posterior distributions, but these are scarcely mentioned in this book.

Overall, I think this is the best book out there in regards to explaining how to actually implement Bayesian analytical techniques on scientific or engineering data. ( )
  PDExperiment626 | May 25, 2009 |
Viser 2 af 2
ingen anmeldelser | tilføj en anmeldelse
Du bliver nødt til at logge ind for at redigere data i Almen Viden.
For mere hjælp se Almen Viden hjælpesiden.
Kanonisk titel
Originaltitel
Alternative titler
Oprindelig udgivelsesdato
Personer/Figurer
Vigtige steder
Vigtige begivenheder
Beslægtede film
Priser og hædersbevisninger
Indskrift
Tilegnelse
Første ord
Citater
Sidste ord
Oplysning om flertydighed
Forlagets redaktører
Bagsidecitater
Originalsprog
Canonical DDC/MDS

Henvisninger til dette værk andre steder.

Wikipedia på engelsk (1)

Statistics lectures have been a source of much bewilderment and frustration for generations of students. This book attempts to remedy the situation by expounding a logical and unified approach to the whole subject of data analysis. This text is intended as a tutorial guide for senior undergraduates and research students in science and engineering. After explaining the basic principles of Bayesian probability theory, their use is illustrated with a variety of examples ranging from elementary parameter estimation to image processing. Other topics covered include reliability analysis, multivariate optimization, least-squares and maximum likelihood, error-propagation, hypothesis testing, maximum entropy and experimental design. The Second Edition of this successful tutorial book contains a new chapter on extensions to the ubiquitous least-squares procedure, allowing for the straightforward handling of outliers and unknown correlated noise, and a cutting-edge contribution from John Skilling on a novel numerical technique for Bayesian computation called 'nested sampling'.

No library descriptions found.

Beskrivelse af bogen
Haiku-resume

Quick Links

Populære omslag

Vurdering

Gennemsnit: (4.05)
0.5
1 1
1.5
2
2.5
3
3.5 1
4 3
4.5 2
5 3

Er det dig?

Bliv LibraryThing-forfatter.

 

Om | Kontakt | LibraryThing.com | Brugerbetingelser/Håndtering af brugeroplysninger | Hjælp/FAQs | Blog | Butik | APIs | TinyCat | Efterladte biblioteker | Tidlige Anmeldere | Almen Viden | 159,048,846 bøger! | Topbjælke: Altid synlig