HjemGrupperSnakMereZeitgeist
Søg På Websted
På dette site bruger vi cookies til at levere vores ydelser, forbedre performance, til analyseformål, og (hvis brugeren ikke er logget ind) til reklamer. Ved at bruge LibraryThing anerkender du at have læst og forstået vores vilkår og betingelser inklusive vores politik for håndtering af brugeroplysninger. Din brug af dette site og dets ydelser er underlagt disse vilkår og betingelser.
Hide this

Resultater fra Google Bøger

Klik på en miniature for at gå til Google Books

Handbook of Monte Carlo Methods (Wiley…
Indlæser...

Handbook of Monte Carlo Methods (Wiley Series in Probability and… (udgave 2011)

af Dirk P. Kroese, Thomas Taimre, Zdravko I. Botev

MedlemmerAnmeldelserPopularitetGennemsnitlig vurderingSamtaler
10Ingen1,525,893 (3)Ingen
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.… (mere)
Medlem:SDavid112
Titel:Handbook of Monte Carlo Methods (Wiley Series in Probability and Statistics)
Forfattere:Dirk P. Kroese
Andre forfattere:Thomas Taimre, Zdravko I. Botev
Info:Wiley (2011), Edition: 1, Hardcover, 772 pages
Samlinger:Dit bibliotek
Vurdering:
Nøgleord:Ingen

Detaljer om værket

Handbook of Monte Carlo Methods af Dirk P. Kroese

Ingen
Indlæser...

Bliv medlem af LibraryThing for at finde ud af, om du vil kunne lide denne bog.

Der er ingen diskussionstråde på Snak om denne bog.

Ingen anmeldelser
ingen anmeldelser | tilføj en anmeldelse

» Tilføj andre forfattere

Forfatter navnRolleHvilken slags forfatterVærk?Status
Dirk P. Kroeseprimær forfatteralle udgaverberegnet
Botev, Zdravko I.hovedforfatteralle udgaverbekræftet
Taimre, Thomashovedforfatteralle udgaverbekræftet
Du bliver nødt til at logge ind for at redigere data i Almen Viden.
For mere hjælp se Almen Viden hjælpesiden.
Kanonisk titel
Oplysninger fra den engelske Almen Viden Redigér teksten, så den bliver dansk.
Originaltitel
Alternative titler
Oprindelig udgivelsesdato
Personer/Figurer
Vigtige steder
Vigtige begivenheder
Beslægtede film
Priser og hædersbevisninger
Indskrift
Tilegnelse
Første ord
Citater
Sidste ord
Oplysning om flertydighed
Forlagets redaktører
Bagsidecitater
Originalsprog
Canonical DDC/MDS
Canonical LCC

Henvisninger til dette værk andre steder.

Wikipedia på engelsk (4)

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

No library descriptions found.

Beskrivelse af bogen
Haiku-resume

Populære omslag

Quick Links

Vurdering

Gennemsnit: (3)
0.5
1
1.5
2
2.5
3 1
3.5
4
4.5
5

Er det dig?

Bliv LibraryThing-forfatter.

 

Om | Kontakt | LibraryThing.com | Brugerbetingelser/Håndtering af brugeroplysninger | Hjælp/FAQs | Blog | Butik | APIs | TinyCat | Efterladte biblioteker | Tidlige Anmeldere | Almen Viden | 163,207,985 bøger! | Topbjælke: Altid synlig