HjemGrupperSnakMereZeitgeist
Har du kigget på SantaThing, LibraryThing's gaveudvekslingstradtion?
afvis
På dette site bruger vi cookies til at levere vores ydelser, forbedre performance, til analyseformål, og (hvis brugeren ikke er logget ind) til reklamer. Ved at bruge LibraryThing anerkender du at have læst og forstået vores vilkår og betingelser inklusive vores politik for håndtering af brugeroplysninger. Din brug af dette site og dets ydelser er underlagt disse vilkår og betingelser.
Hide this

Resultater fra Google Bøger

Klik på en miniature for at gå til Google Books

Indlæser...

Classical Groups and Geometric Algebra

af Larry C. Grove

MedlemmerAnmeldelserPopularitetGennemsnitlig vurderingSamtaler
9Ingen1,549,102IngenIngen
``Classical groups'', named so by Hermann Weyl, are groups of matrices or quotients of matrix groups by small normal subgroups. Thus the story begins, as Weyl suggested, with ``Her All-embracing Majesty'', the general linear group $GL_n(V)$ of all invertible linear transformations of a vector space $V$ over a field $F$. All further groups discussed are either subgroups of $GL_n(V)$ or closely related quotient groups. Most of the classical groups consist of invertible linear transformations that respect a bilinear form having some geometric significance, e.g., a quadratic form, a symplectic form, etc. Accordingly, the author develops the required geometric notions, albeit from an algebraic point of view, as the end results should apply to vector spaces over more-or-less arbitrary fields, finite or infinite. The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles. It is intended for graduate students who have completed standard courses in linear algebra and abstract algebra. The author, L. C. Grove, is a well-known expert who has published extensively in the subject area.… (mere)

Ingen.

Ingen
Indlæser...

Bliv medlem af LibraryThing for at finde ud af, om du vil kunne lide denne bog.

Der er ingen diskussionstråde på Snak om denne bog.

Ingen anmeldelser
ingen anmeldelser | tilføj en anmeldelse

Belongs to Series

Du bliver nødt til at logge ind for at redigere data i Almen Viden.
For mere hjælp se Almen Viden hjælpesiden.
Kanonisk titel
Oplysninger fra den engelske Almen Viden Redigér teksten, så den bliver dansk.
Originaltitel
Alternative titler
Oprindelig udgivelsesdato
Personer/Figurer
Vigtige steder
Vigtige begivenheder
Beslægtede film
Priser og hædersbevisninger
Indskrift
Tilegnelse
Første ord
Citater
Sidste ord
Oplysning om flertydighed
Forlagets redaktører
Bagsidecitater
Originalsprog
Canonical DDC/MDS

Henvisninger til dette værk andre steder.

Wikipedia på engelsk (2)

``Classical groups'', named so by Hermann Weyl, are groups of matrices or quotients of matrix groups by small normal subgroups. Thus the story begins, as Weyl suggested, with ``Her All-embracing Majesty'', the general linear group $GL_n(V)$ of all invertible linear transformations of a vector space $V$ over a field $F$. All further groups discussed are either subgroups of $GL_n(V)$ or closely related quotient groups. Most of the classical groups consist of invertible linear transformations that respect a bilinear form having some geometric significance, e.g., a quadratic form, a symplectic form, etc. Accordingly, the author develops the required geometric notions, albeit from an algebraic point of view, as the end results should apply to vector spaces over more-or-less arbitrary fields, finite or infinite. The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles. It is intended for graduate students who have completed standard courses in linear algebra and abstract algebra. The author, L. C. Grove, is a well-known expert who has published extensively in the subject area.

No library descriptions found.

Beskrivelse af bogen
Haiku-resume

Quick Links

Populære omslag

Vurdering

Gennemsnit: Ingen vurdering.

Er det dig?

Bliv LibraryThing-forfatter.

 

Om | Kontakt | LibraryThing.com | Brugerbetingelser/Håndtering af brugeroplysninger | Hjælp/FAQs | Blog | Butik | APIs | TinyCat | Efterladte biblioteker | Tidlige Anmeldere | Almen Viden | 152,674,179 bøger! | Topbjælke: Altid synlig