Picture of author.
14+ Works 13,955 Members 207 Reviews 37 Favorited

Om forfatteren

Simon Singh was born in Great Britain in 1964 and educated at Imperial College and the University of Cambridge (where he received a Ph. D. in particle physics). He worked at the European Centre for Particle Physics and the BBC's science department. At the BBC, he worked on Tomorrow's World. Singh vis mere and John Lynch produced and directed an award-winning documentary on Fermat's Last Theory. He later published a book on the same topic. (Bowker Author Biography) vis mindre
Image credit: Credit: Steve Trigg, 2005, Brisbane

Værker af Simon Singh

Associated Works

The Atheist's Guide to Christmas (2009) — Bidragyder — 355 eksemplarer

Satte nøgleord på

Almen Viden

Medlemmer

Anmeldelser

Indeholder "Foreword by John Lynch", "Preface", "1. 'I Think I'll Stop Here'", "2. The Riddler", "3. A Mathematical Disgrace", "4. Into Abstraction", "5. Proof by Contradiction", "6. The Secret Calculation", "7. A Slight Problem", "8. Epilogue", "Appendices", "Suggestions for Further Reading", "Picture Credits", "Index".

"Foreword by John Lynch" handler om ???
"Preface" handler om ???
"1. 'I Think I'll Stop Here'" handler om Andrew Wiles og hans fremlæggelse af det første bevis (som der hurtigt blev fundet et hul i)
"2. The Riddler" handler om Fermat og hans samtid og virke sluttende af med hans lille gåde, som forresten kun blev kendt takker være sønnen.
"3. A Mathematical Disgrace" handler om at knække n=4 og n=3. Sophie Germain finder et generelt værktøj, der reducerer hvert enkelt tilfælde til en træls checke-procedure der kan overlades til en computer, men det er jo kun en måde at finde et modeksempel, hvis det findes, ikke et bevis.
"4. Into Abstraction" handler om Woflkehl-prisen, Hilberts program, Gottlob Frege, Bertrand Russell, Kurt Gödel, Alan Turing, Andrew Wiles, John Coates. Elliptiske ligninger og L-rækker, som i denne bog kaldes E-rækker.
"5. Proof by Contradiction" handler om Yutaka Taniyama, Goro Shimura og Taniyama-Shimura formodningen om at modulære former og elliptiske ligninger hænger sammen som ærtehalm. I 1984 foreslår Gerhard Frey at en løsning til Fermats ligning vil være et modeksempel til Taniyama-Shimura formodningen. Ken Ribet beviser dette i 1986 ved hjælp af et hint fra Barry Mazur.
"6. The Secret Calculation" handler om Andrew Wiles og hans 7 år lange projekt med at bevise Taniyama-Shimura formodningen. Han bruger Galois-grupper til at vise trin 1 i et induktionsbevis, men mangler at knække koden til at gå fra n til n+1. Undervejs annoncerer Yoichi Miyaoka et bevis, men der viser sig et irreparabelt hul i det. Wiles bruger en metode kaldet Kolyvagin-Flach, men er nødt til at bede Nick Katz om hjælp til at gennemgå teorien for at se om det holder. De bruger en hel forelæsningsrække på at gennemgå det og gør det så obskurt at alle studerende falder fra.
Da Wiles har overbevist sig om metodens rigtighed går han i gang med at splitte de elliptiske ligninger op i familier og knækker dem en efter en. Beviset bliver så gennemgået under tre forelæsninger på Isaac Newton Institute.
"7. A Slight Problem" handler om at beviset nu skal gennemgå peer-review og undervejs viser der sig et lille problem, som det koster nogle måneder for Wiles og Richard Taylor at løse.
"8. Epilogue" handler om ???
"Appendices" handler om diverse småting, som er for store til fodnoter. Fx en del af et bevis for Sylvesters Sætning, Prikformodningen.
"Suggestions for Further Reading" giver forslag til supplerende læsning kapitel for kapitel.
"Picture Credits" handler om hvor billederne kommer fra.
"Index" er et udmærket register, hvor man dog ikke kan slå "skotske får" op.

Alt i alt en fremragende bog, som giver blod på tanden til at fordybe sig noget mere i elliptiske ligninger og modulære former.
… (mere)
 
Markeret
bnielsen | 63 andre anmeldelser | Jul 3, 2021 |
Indeholder "Introduktion", "Forord", "1. 'Jeg tror jeg stopper her'", "2. Gådemanden", "3. En matematisk skændsel", "4. Ud i abstraktionen", "5. Indirekte bevis", "6. Den hemmelige udregning", "7. Et lille problem", "8. Stor matematik", "Tillæg", "Supplerende læsning", "Billedkilder", "Stikordsregister".

"Introduktion" handler om det første møde mellem Andrew Wiles og Simon Singh. Det sker kort efter at en fejl er blevet fundet i Wiles første bevis for Fermats store sætning: at der ikke er heltalsløsninger til a^n + b^n = c^n for n større end 2.
"Forord" handler om bogens opbygning og takker en masse mennesker for hjælp og bistand.
"1. 'Jeg tror jeg stopper her'" handler om Andrew Wiles og hans fremlæggelse af det første bevis (som der hurtigt blev fundet et hul i)
"2. Gådemanden" handler om Fermat og hans samtid og virke sluttende af med hans lille gåde, som forresten kun blev kendt takker være sønnen.
"3. En matematisk skændsel" handler om at knække n=4 og n=3. Sophie Germain finder et generelt værktøj, der reducerer hvert enkelt tilfælde til en træls checke-procedure der kan overlades til en computer, men det er jo kun en måde at finde et modeksempel, hvis det findes, ikke et bevis.
"4. Ud i abstraktionen" handler om Woflkehl-prisen, Hilberts program, Gottlob Frege, Bertrand Russell, Kurt Gödel, Alan Turing, Andrew Wiles, John Coates. Elliptiske ligninger og L-rækker, som i denne bog kaldes E-rækker.
"5. Indirekte bevis" handler om Yutaka Taniyama, Goro Shimura og Taniyama-Shimura formodningen om at modulære former og elliptiske ligninger hænger sammen som ærtehalm. I 1984 foreslår Gerhard Frey at en løsning til Fermats ligning vil være et modeksempel til Taniyama-Shimura formodningen. Ken Ribet beviser dette i 1986 ved hjælp af et hint fra Barry Mazur.
"6. Den hemmelige udregning" handler om Andrew Wiles og hans 7 år lange projekt med at bevise Taniyama-Shimura formodningen. Han bruger Galois-grupper til at vise trin 1 i et induktionsbevis, men mangler at knække koden til at gå fra n til n+1. Undervejs annoncerer Yoichi Miyaoka et bevis, men der viser sig et irreparabelt hul i det. Wiles bruger en metode kaldet Kolyvagin-Flach, men er nødt til at bede Nick Katz om hjælp til at gennemgå teorien for at se om det holder. De bruger en hel forelæsningsrække på at gennemgå det og gør det så obskurt at alle studerende falder fra.
Da Wiles har overbevist sig om metodens rigtighed går han i gang med at splitte de elliptiske ligninger op i familier og knækker dem en efter en. Beviset bliver så gennemgået under tre forelæsninger på Isaac Newton Institute.
"7. Et lille problem" handler om at beviset nu skal gennemgå peer-review og undervejs viser der sig et lille problem, som det koster nogle måneder for Wiles og Richard Taylor at løse.
"8. Stor matematik" handler om Goldbachs formodning, Keplers kuglepakning, Firfarveteoremet og lignende.
"Tillæg" handler om diverse småting, som er for store til fodnoter. Fx en del af et bevis for Sylvesters Sætning, Prikformodningen.
"Supplerende læsning" giver forslag til supplerende læsning kapitel for kapitel.
"Billedkilder" handler om hvor billederne kommer fra.
"Stikordsregister" er et udmærket register, hvor man dog ikke kan slå "skotske får" op.

Alt i alt en fremragende bog, som giver blod på tanden til at fordybe sig noget mere i elliptiske ligninger og modulære former.
… (mere)
 
Markeret
bnielsen | 63 andre anmeldelser | Oct 21, 2013 |

Lister

Hæderspriser

Måske også interessante?

Associated Authors

Klaus Fritz Translator
Mea Flothuis Translator
Andy Bridge Cover artist
John Lynch Foreword
David Orthel Translator

Statistikker

Værker
14
Also by
1
Medlemmer
13,955
Popularitet
#1,648
Vurdering
4.1
Anmeldelser
207
ISBN
229
Sprog
24
Udvalgt
37

Diagrammer og grafer